Soi c\u1ea7u Pascal l\u00e0 g\u00ec? M\u1ed9t trong nh\u1eefng c\u00f4ng th\u1ee9c \u0111\u01b0\u1ee3c c\u00e1c chuy\u00ean gia \u0111\u00e1nh gi\u00e1 r\u1ea5t cao nh\u1edd v\u00e0o c\u00e1ch t\u00ednh to\u00e1n logic, \u0111\u1ea7y chi\u1ebfn thu\u1eadt v\u00e0 x\u00e1c su\u1ea5t tr\u00fang l\u00ean \u0111\u1ebfn 80% \u0111\u00f3 l\u00e0 c\u00e1ch soi c\u1ea7u pascal. \u0110\u1ed5i l\u1ea1i v\u1edbi \u0111\u00f3 l\u00e0 v\u00f4 v\u00e0n kh\u00f3 kh\u0103n trong vi\u1ec7c th\u1ef1c hi\u1ec7n ph\u01b0\u01a1ng ph\u00e1p n\u00e0y \u0111ang ch\u1edd \u0111\u00f3n anh em.<\/span><\/p>\n V\u00ec th\u1ebf h\u00f4m nay chia s\u1ebb b\u00e0i vi\u1ebft h\u01b0\u1edbng d\u1eabn c\u00e1ch soi c\u1ea7u tam gi\u00e1c Pascal \u0111\u1ec3 anh em ch\u1ea5m d\u1ee9t c\u1ea3nh xa b\u1edd v\u00e0 lu\u00f4n c\u00f3 1 b\u00ed quy\u1ebft b\u1eaft s\u1ed1 \u0111\u1ec3 th\u1ee7 th\u00e2n khi tham gia l\u0129nh v\u1ef1c s\u1ed1 h\u1ecdc.<\/span><\/p>\n Soi c\u1ea7u pascal l\u00e0 m\u1ed9t ph\u01b0\u01a1ng ph\u00e1p b\u1eaft s\u1ed1 d\u1ef1a theo quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal \u0111\u01b0\u1ee3c \u0111\u1eb7t t\u00ean theo nh\u00e0 to\u00e1n h\u1ecdc n\u1ed5i ti\u1ebfng ng\u01b0\u1eddi Ph\u00e1p Blaise Pascal \u0111\u1ec3 t\u00ecm ra con b\u1ea1ch th\u1ee7.<\/span><\/p>\n Theo quy lu\u1eadt c\u1ee7a tam gi\u00e1c Pascal b\u1eaft b\u1ea1ch th\u1ee7, c\u00e1c h\u00e0ng tam gi\u00e1c s\u1ebd \u0111\u01b0\u1ee3c li\u1ec7t k\u00ea theo quy \u01b0\u1edbc b\u1eaft \u0111\u1ea7u tr\u00ean h\u00e0ng 0 b\u1eb1ng 1 s\u1ed1 duy nh\u1ea5t, c\u00e1c con s\u1ed1 c\u1ee7a h\u00e0ng ti\u1ebfp theo s\u1ebd \u0111\u01b0\u1ee3c t\u00ednh theo c\u00e1ch th\u00eam s\u1ed1 \u1edf tr\u00ean v\u00e0 b\u00ean tr\u00e1i c\u00f9ng s\u1ed1 \u1edf tr\u00ean sang ph\u1ea3i. Cu\u1ed1i c\u00f9ng l\u00e0 2 h\u00e0ng li\u1ec1n k\u1ec1 s\u1ebd c\u00f3 c\u00e1c con s\u1ed1 \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp xen k\u1ebd nhau.<\/span><\/p>\n \u0110\u1ec3 \u00e1p d\u1ee5ng \u0111\u01b0\u1ee3c c\u00e1c c\u00e1ch t\u00ednh n\u00e0y, anh em c\u1ea7n ph\u1ea3i c\u00f3 t\u01b0 duy nh\u1ea1y b\u00e9n, ph\u00e2n t\u00edch, t\u00ednh to\u00e1n c\u1ea9n th\u1eadn. C\u00f3 nh\u01b0 v\u1eady m\u1edbi \u00e1p d\u1ee5ng c\u00e1ch soi c\u1ea7u pascal ra \u0111\u01b0\u1ee3c c\u1eb7p l\u00f4 ch\u00ednh x\u00e1c nh\u1ea5t.<\/span><\/p>\n \u0110i\u1ec1u c\u01a1 b\u1ea3n \u0111\u1ea7u ti\u00ean anh em c\u1ea7n l\u00e0m l\u00e0 c\u1ea7n x\u00e1c \u0111\u1ecbnh 1 d\u00e3y s\u1ed1 \u0111\u1ea7u ti\u00ean l\u00e0m \u0111\u1ebf th\u00e1p, sau \u0111\u00f3 th\u1ef1c hi\u1ec7n ph\u00e9p c\u1ed9ng cho 2 s\u1ed1 \u0111\u1ee9ng c\u1ea1nh nhau s\u1ebd \u0111\u01b0\u1ee3c d\u00e3y th\u1ee9 2. L\u1eb7p l\u1ea1i li\u00ean t\u1ee5c cho \u0111\u1ebfn khi t\u1ea1o th\u00e0nh tam gi\u00e1c Pascal.<\/span><\/p>\n Anh em s\u1ebd l\u1ea5y k\u1ebft qu\u1ea3 c\u1ee7a gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t c\u1ee7a ng\u00e0y h\u00f4m nay, sau \u0111\u00f3 gh\u00e9p ch\u00fang l\u1ea1i v\u1edbi nhau th\u00e0nh 1 h\u00e0ng ngang \u0111\u1ec3 l\u00e0m \u0111\u1ebf th\u00e1p.<\/span><\/p>\n Quan s\u00e1t b\u1ea3ng KQSX tr\u00ean t\u00f4i c\u00f3 G.\u0110B v\u00e0 G.1 \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp theo nh\u01b0 sau<\/span><\/p>\n 5226749403<\/span><\/p>\n B\u01b0\u1edbc ti\u1ebfp theo t\u00f4i s\u1ebd d\u00f9ng quy \u01b0\u1edbc Pascal l\u00e0 l\u1ea5y 2 s\u1ed1 li\u1ec1n k\u1ec1 c\u1ed9ng l\u1ea1i, n\u1ebfu k\u1ebft qu\u1ea3 l\u1edbn h\u01a1n con s\u1ed1 10 th\u00ec t\u00f4i l\u1ea5y s\u1ed1 \u1edf h\u00e0ng \u0111\u01a1n v\u1ecb, b\u1ecf con s\u1ed1 \u1edf h\u00e0ng ch\u1ee5c v\u00e0 s\u1ebd \u0111\u1eb7t n\u00f3 \u1edf h\u00e0ng th\u1ee9 2 c\u1ee7a th\u00e1p.<\/span><\/p>\n 5+2=7; 2+2=4; 2+6=8; 6+7=13 l\u1ea5y 3 b\u1ecf 1; 7+4=11 l\u1ea5y 1; 4+9=13 l\u1ea5y 3 b\u1ecf 1; 9+4=13 l\u1ea5y 3 b\u1ecf 1; 4+0=4; 0+3=3 => ta \u0111\u01b0\u1ee3c h\u00e0ng th\u1ee9 hai l\u00e0: 748313343.<\/span><\/p>\n C\u1ee9 l\u1eb7p l\u1ea1i qu\u00e1 tr\u00ecnh t\u01b0\u01a1ng t\u1ef1 nh\u01b0 tr\u00ean cho \u0111\u1ebfn cu\u1ed1i c\u00f9ng ch\u1ec9 c\u00f2n 2 con s\u1ed1, th\u00ec t\u00f4i s\u1ebd c\u00f3 \u0111\u01b0\u1ee3c tam gi\u00e1c Pascal sau:<\/span><\/p>\n 5226749403<\/span> Nh\u01b0 v\u1eady t\u00f4i c\u00f3 c\u1eb7p b\u1ea1ch th\u1ee7 \u0111\u1ec1 c\u1ef1c \u0111\u1eb9p \u0111\u1ec3 \u0111\u1eb7t c\u01b0\u1ee3c l\u00e0 17 \u2013 71.<\/span><\/p>\n C\u0169ng t\u01b0\u01a1ng t\u1ef1 nh\u01b0 tr\u00ean, nh\u01b0ng ch\u00fang ta s\u1ebd ch\u1ecdn gi\u1ea3i 2 \u0111\u1ec3 l\u00e0m m\u00f3ng. Nh\u01b0 v\u00ed d\u1ee5 tr\u00ean th\u00ec ta c\u00f3 h\u00e0ng gi\u1ea3i 2 l\u00e0 94349 v\u00e0 97172.<\/span><\/p>\n Anh em x\u1ebfp ch\u00fang th\u00e0nh m\u00f3ng: 9434997172 r\u1ed3i th\u1ef1c hi\u1ec7n quy t\u1eafc c\u1ed9ng nh\u01b0 tr\u00ean, c\u1ee9 th\u1ebf s\u1ebd t\u00ecm \u0111\u01b0\u1ee3c \u0111\u1ec9nh v\u00e0 con b\u1ea1ch th\u1ee7 c\u1ee7a ch\u00fang ta s\u1ebd n\u1eb1m \u1edf \u0111\u00f3.<\/span><\/p>\n D\u1ef1a v\u00e0o k\u1ebft qu\u1ea3 x\u1ed5 s\u1ed1 ng\u00e0y h\u00f4m tr\u01b0\u1edbc t\u1ea1i c\u00f9ng v\u1ecb tr\u00ed gi\u1ea3i, ta s\u1ebd ch\u1ecdn ra m\u1ed9t c\u1eb7p s\u1ed1 d\u1ef1 \u0111o\u00e1n cho h\u00f4m sau. Th\u01b0\u1eddng s\u1ed1 n\u00e0y s\u1ebd c\u00f3 c\u01a1 h\u1ed9i v\u1ec1 4 ng\u00e0y tr\u1edf l\u00ean n\u00ean anh em c\u1ea7n ch\u00fa \u00fd.<\/span><\/p>\n C\u0103n c\u1ee9 theo k\u1ebft qu\u1ea3 XSMB ng\u00e0y 1\/1 ta c\u00f3 2 c\u1eb7p s\u1ed1 c\u00f9ng m\u1ed9t gi\u1ea3i l\u00e0:<\/span><\/p>\n Theo \u0111u\u00f4i s\u1ed1 ta d\u1ef1 \u0111o\u00e1n c\u1eb7p s\u1ed1 c\u00f3 kh\u1ea3 n\u0103ng v\u1ec1 l\u00e0 68 \u2013 86. K\u1ebft qu\u1ea3 ng\u00e0y 2\/1 c\u00f3 68<\/span><\/p>\n D\u1ef1a theo c\u00e1ch soi c\u1ea7u nay, ta ti\u1ebfp t\u1ee5c soi c\u1ea7u cho ng\u00e0y 3\/1 v\u00e0 nhi\u1ec1u ng\u00e0y ti\u1ebfp theo. C\u00e1ch soi c\u1ea7u d\u1ef1a v\u00e0o s\u1ed1 cu\u1ed1i c\u1ee7a c\u00e1c gi\u1ea3i nh\u01b0 v\u1eady s\u1ebd gi\u00fap c\u00e1c b\u1ea1n \u0111\u01b0a ra nh\u1eefng ph\u00e1n \u0111o\u00e1n ch\u00ednh x\u00e1c h\u01a1n r\u1ea5t nhi\u1ec1u.<\/span><\/p>\n \u0110\u1ed1i v\u1edbi c\u00e1c anh em l\u00ednh m\u1edbi, ch\u01b0a c\u00f3 nhi\u1ec1u kinh nghi\u1ec7m th\u00ec c\u00e1ch soi c\u1ea7u n\u00e0y l\u00e0 c\u00e1ch ch\u01a1i \u0111\u01a1n gi\u1ea3n nh\u1ea5t. Anh em c\u00f3 th\u1ec3 tho\u1ea3i m\u00e1i \u00e1p d\u1ee5ng m\u00e0 kh\u00f4ng c\u1ea7n tu\u00e2n theo b\u1ea5t k\u1ef3 m\u1ed9t quy t\u1eafc n\u00e0o. \u0110\u1ed3ng th\u1eddi, v\u1edbi c\u00e1ch t\u00ednh n\u00e0y c\u0169ng gi\u00fap cho kh\u00f4ng \u00edt anh em \u201cc\u1eadp b\u1edd\u201d m\u1ed9t c\u00e1ch nhanh ch\u00f3ng.<\/span><\/p>\n Vi\u1ec7c s\u1eed d\u1ee5ng thu\u1eadt to\u00e1n pascal trong soi c\u1ea7u c\u00f3 r\u1ea5t nhi\u1ec1u t\u00e1c d\u1ee5ng hi\u1ec7u qu\u1ea3 nh\u01b0 sau:<\/span><\/p>\n Vi\u1ec7c s\u1eed d\u1ee5ng thu\u1eadt to\u00e1n pascal trong vi\u1ec7c soi c\u1ea7u l\u00f4 \u0111\u1ec1 s\u1ebd gi\u00fap c\u00e1c b\u1ea1n t\u0103ng kh\u1ea3 n\u0103ng chi\u1ebfn th\u1eafng m\u1ed9t c\u00e1ch nhanh ch\u00f3ng v\u00e0 d\u1ec5 d\u00e0ng. C\u00e1c b\u1ea1n ho\u00e0n to\u00e0n c\u00f3 th\u1ec3 d\u1ef1a v\u00e0o c\u00e1ch t\u00ednh n\u00e0y \u0111\u1ec3 t\u00ecm ra nh\u1eefng s\u1ed1 \u0111\u1ec1 ph\u00f9 h\u1ee3p. \u0110\u01b0\u1ee3c m\u1ec7nh danh l\u00e0 c\u00e1ch t\u00ednh \u201ctr\u0103m ph\u00e1t tr\u0103m tr\u00fang\u201d, ng\u01b0\u1eddi ta th\u01b0\u1eddng s\u1eed d\u1ee5ng c\u00e1ch t\u00ednh n\u00e0y kh\u00e1 ph\u1ed5 bi\u1ebfn.<\/span><\/p>\n<\/span>Soi c\u1ea7u Pascal l\u00e0 g\u00ec?<\/span><\/h2>\n
<\/p>\n
<\/span><\/span>C\u00e1ch soi c\u1ea7u Pascal chu\u1ea9n theo d\u00e2n ch\u01a1i<\/span><\/h2>\n
<\/span><\/span>Soi l\u00f4 \u0111\u1ec1 Pascal d\u1ef1a v\u00e0o gi\u1ea3i \u0111\u1eb7c bi\u1ec7t v\u00e0 gi\u1ea3i nh\u1ea5t<\/span><\/h3>\n
\n748313343<\/span>
\n12144677<\/span>
\n3358034<\/span>
\n683837<\/span>
\n41110<\/span>
\n5221<\/span>
\n743<\/span>
\n17<\/span><\/p>\n<\/p>\n
<\/span><\/span>C\u00e1ch soi c\u1ea7u tam gi\u00e1c Pascal v\u1edbi gi\u1ea3i 2<\/span><\/h3>\n
<\/span>C\u00e1ch soi c\u1ea7u tam gi\u00e1c Pascal c\u00f9ng 1 v\u1ecb tr\u00ed gi\u1ea3i<\/span><\/h3>\n
\n
<\/span>T\u1ea1i sao n\u00ean s\u1eed d\u1ee5ng thu\u1eadt to\u00e1n pascal trong soi c\u1ea7u?<\/span><\/h2>\n
<\/p>\n
<\/span>T\u0103ng kh\u1ea3 n\u0103ng chi\u1ebfn th\u1eafng<\/span><\/h3>\n
<\/div>\n<\/header>\n
\n